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The relaxation process n

In optimization theory, relaxation methods are techniques used to
simplify complex optimization problems by relaxing, or loosening,
constraints. This allows for easier computation and often leads to
approximate solutions that are still satisfactory for practical purposes.

Relaxation methods are particularly useful when dealing with non-
convex (and/or combinatorial) optimization problems where finding
exact solutions is difficult or computationally expensive (sometimes
impossible, like in NP-hard problems).

An important property that any relaxation process should have, is to
guarantee that the solution of the relaxed problem satisfies the
constraints of the original problem. As we will see next, such property
may not hold.



The relaxation process n

Let’'s consider the standard optimization problem (P), defined for

x € D c R", where the set D is the domain of definition of (P):
(P): min f(x)
S.t.

The relaxation of (P) is to identify a new convex problem (P")

(P"):min f7 (x)

S.t.
ff(x) <0, i=1:m
hrj(X) = O, ] = 1p
x €ED" c R"
where f7(x) is convex, f(x) <0 and h";(x) = 0 are convex
inequalities and equalities such that
1. D" 2D

2. ff(x) < f(x),Vvx €D



The relaxation process n

1. D" 2D
2. fT"(x) < f(x),vx €D
The first property states that the domain of definition of (P) is a subset of

(P™). The second property states that the objective function of (P)is
greater than or equal to the one of (P") vx € D.

The consequences are:

1. if x*is asolution of (P), then x* € D € D" and f(x*) = f"(x*), then
the optimal value of (P") is a lower bound for (P).

2. since f(x*) = f"(x*) Vx* € D, a solution of (P") is feasible for (P),
then it is the optimal of (P).

The problem that may arise is that, since D" 2 D, the solution of (P")
may produce a solution that is unfeasible for (P). Therefore, the usual
approach is to have penalties that guarantee that the relaxation is
tight or, in other words, the solution of (P™) satisfies the constraints of (P)
with a very good approximation (ideally none).



The relaxation process n

Example #1
Let us consider the following mixed integer linear program (MILP):
minc’ (x, z)
s.t.
F(x,z) <g
A(x,z) = b
z € {0,1}4

x € R"?
As known, MILP problems are hard to solve in their standard form.

The simplest relaxation is to replace z € {0,1}9 with z € [0,1]4. In this way,
the optimal value of relaxed LP is a lower bound of the MILP.

Furthermore, in order to make the relaxation tight, we may add to the
objective of the relaxed problem a function that is minimised when
z—-0,1.
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Example #2
Let us consider the following problem

min f(x,y)
X,y

s.t.

xl <x<xV

yr<y<y'

X-y=w
In this problem, we minimise a cost function f(x, y) supposed to be
convex, associated to two generic products x and y, while satisfying
min-max bounds of both products and the interaction among them
captured by the bilinear consiraint that makes the problem non-
convex.
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Example #2 cont'd

A way to relax and convexify the problem is to use the so-called
McCormick relaxation of x - y = w given by four linear inequalities.

Let us introduce two auxiliary variables, say a, b, that are always
positive by construction with respect to the upper and lower bounds
XL, xU, yLyU:

~ a=x-x1),b=>@ -y
a-b20-(x—x -y =xy—xty —xyt +x"yt >0
w = xby + xyl — xtyl
a=uY-x),b=0HY-y)
a-b20-0a’-x)- Y-y =2y’ —yx¥ —xyU +xy >0

Under-estimators =

_ w > xyU + yxU — xUyU
- a=xY-x),b=(—-yh)
a-b=>0->xYV-x)-(y—yH) =xYy —xy —xUyl + xyL >0
w < xVy — xUyL 4 xyl
a=x-x1)b=0Q"%-y)
a-b=>0->(x—x5 -WV—-y)=xy¥ —xy —xtyYV + xly >0

Over-estimators =

w < xyU — xlyV + xly
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Example #2 cont'd
The relaxed and convex problem is

y A Convex Overestimators
i Convex Underestimators e
. LY w—
min f(x, y) yU
X,y
S.t.
xb<x<xV
L U
y'SY=sYy

w > xty + xyt — xlyt
w = xyY + yxV —xUyY

w<xVy —xUyl + xyl

w < xy¥ —xly¥ + xly

Clearly, in this example the domain of the relaxed problem include the
one of the non-relaxed one: D" 2 D and the solution of the relaxed
problem may be unfeasible for the non-relaxed one.
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Second order cone programming n

Let’s start with a simple example: the second-order cone, or quadratic
cone, it is given by the elements of (x,y,z) € R3 satisfying this condition:

VX2 +y? <z

Now, let us consider z to be a parameter, say t, we can generalize the
above inequality to a second-order cone of dimension n + 1:

Crvai{[ (]| 1112 < ¢}

x ER"teR

This constraint for x is convex and we can further generalise it as:
|Ax + bll, < cTx+d
x,c € R"
AE Rn+1><n
b € R*t!
d €R



Second order cone programming n

Therefore, an opfimisation problem with the following form, is called
second-order cone programming (SOCP):

min h’ x
X
S.t.
lA;x + bill, <c/x+d;, i=1,..,m
where
x, f,c € R"
A € ]Rnixn
b € R™
d € R

The above problem is convex. In what follows, we show how we can
relax the OPF in the form of a SOCP problem.
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SOCP and the branch flow model m

Let us consider a power system whose topology is identified by a
connected graph G = (5, L) where § represents the set of nodes, and £
the set of branches:

S ={1,..., s} where s is the total number of buses;

L ={1,..,1} where L is the total number of branches. Naturally, a
branch between buses i and j is an elementin L: (i,j) € L.

Trivially, the considered power system is called radial if its graph G is a
tree. For distribution networks, which are typically radial, the root of the
tree (node 1) represents the substation bus and, usually, the slack.

For a generally meshed tfransmission network, node 1 represents the
slack bus being the largest power plant (or equivalent) in the system.



SOCP and the branch flow model m

Let us recall the branch flow model: consider a generic branch
between nodes i and ; of the network modelled by a generic I1-
equivalent model

_ Vj
S 35,
k
_’—I - YZij B r
S; Yi YJ Sj

v, V complex nodal voltages respectively at nodesi and
Si, E complex apparent power injections respectively at nodesi and

ij- complex power flow from node i to node
. complex current flow through the branch impedance Z

<15 Sl

i) Y . complex shunt admittances respectively at nodes i Ondj

Zkgki . complex apparent power entering info node i from the rest of the grid
Yk Sjk - complex apparent power leaving node j towards the rest of the grid



SOCP and the branch flow model n

By introducing two variables composed by the squares of magnitudes
of nodal voltages and currents:

—_ 2 —_ 2
v = |Vi| v = |V
2

tzi; = | zy

we goft the branch flow model

Sij—ZijiZi.—Yivi—Yjvj+§j = Sjk
]
k

Z Eki +§i: Eij
k

—_ .2 — —
v = U1+|Zu| izij - ZiR[Zl](Sl] _ Yivi)]

|Sij — Vvl
Vi
Let us use the first constraint and separate the nodal injected active

and reactive powers in node j since they are the OPF decision
variables.

iz =



SOCP and the branch flow model

We have for a generic branch (i,j) € £

Pj = ijk — Pl] + RijiZij + Givi + G]UJ
k

Qj = z ij — Qij +Xijizij + Bivi + ijj
k
along with the two other constraints of the branch flow model
— (2. — —
Uj = vl+|Zl]| lZij — ZSR[ZU(SU — Yl-vi)]

— — 2
|Sij — Y

Zij vi

The first three constraints are linear and the non-convexity of the
branch flow model is only due to the last one. Let’'s see how we can
relax this equality by means of the SOCP.



SOCP and the branch flow model n

It is easy to show that the constraint

— — 2
B S — Y B (P — Givi)z +(Qij — Bivy)

Vi (%]

2

iz

can be rewritten as follows:
Z(Pl] — Givi)
Z(QU — Bivi) = iZij + V;

lZij — Vi ,

Indeed, we have the following:
2
\/4(PU — Givi)z ~+ 4(QU — Bivi)z + (izij — Ul') = (izij + Ui)
4(Py — Gvy)" +4(Qy — Bivy)” + 2, + v — 2, vy = 12, + v? + 20, v,

(P, — Givi)z +(Q;; — Bivi)z = 1z,




SOCP and the branch flow model n

It is interesting to note that the constraint
Z(Pl] — Givi)
Z(Ql] — Bivi) = iZij + Vi

lZij — Vi "

can be written in the general form of a second-order cone inequality
4;x + b;ll, < c¢fx+d;

Z(Pl] — Givi)
Z(QU — Bivi) < iZij + Vi

lzij — V;

or, in other terms, can be written by relaxing iz, (i.e, we relax the
branch losses Z; jiz;; being Z;; a parameter):

— 2
S — Yivi]

Vj

=

iz,



SOCP and the branch flow model m
_ -

Z_ Vi ? J) _
5ki4’| <. ij Zsjk
: 2 :

rl 7Zij —

S Y; Yy o5

There is now the need 1o satisfy the branch power/ampacity limit.
In the case we apply a constraint to the branch power, we need to
have:

PZ + Q% < (s1er)’
It is interesting to note that the above constraint is also a second-order
cone, so it fits the SOCP.

In case we need to constraint the branch current module, we may
neglect the current flowing through the shunt Y; and constraint the Tzij:

|7ij|2 ~ iZij(t) < (Iir}wx 2



SOCP and the branch flow model m

The SOCP-relaxed OPF is the following:

Tmax g

m
i P t )+ ) ¢ P t
Py, (D), ng(w O, (0). Qg4 (1) Z Z (8, Qg ) £ 3 )

Py (B),Psyy (6,05, (6,05, ()

s.t.

Pi(t) = Xy Pjxe (8) = Pyj(6) + Ryji,, () + Gy (0) + G (0), (i, )) € £
Q;(® = Xk Qjie(®) — Qi (&) + X1z, (O) + Bivi(6) + Bjv;(6),(i,)) € £

Xk Pi() + Pi(t) = Pj(t), (i,)) € L
2k Qi) +Q;(1) = Q;;(), (i,j)) €L
Bi(6) = By, (©) + Py (D), +F5 (8),j €S

Qi) = Qq;(®) + @, (1) + Qs (1), j €S

v(0) = v (O+Zy [ 1, (© — 2R[ 2 (5,0 = Yo, )], ) € £

Pt < Py () S B, j=1,.., 9
QP < QM =<QR™,j=1,..9g
P < P () S P, j=1,..,m
Qs in < Qs; () < Q5™ j=1,..,m
Vi|=1pu

V2 SV < V2 jES

min =

|§ij(t) - ?ivi(t)|2
v; ()

2 2
PH®) + QD) < (S77%) or iy, (0 < (17}*)", (i) € £
SoCi(t +1) = SoGi(t) + A (t + DAL, j=1,..,m

iy, (8) 2 (per

SoC™™ < SoC;(t + 1) < SoC™™,j =1,.
g <P e+ D-PR O <EP¥, j=1,.,9

Where we have considered to control
= g generators;
= menergy storage devices.

Remember that in these constraints the
voltage angles are not present and
have to be retrieved a-posteriori (see
lecture 2.4).
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In view of the relaxation applied to the branch losses Z; jlzgn the SOCP-

OPF does not satisfy the load flow equations (i.e., the relaxation is not
tight). In other terms, to satisfy the constraint

|§ij(t) — ?ivi(t)lz
v;(t)

the SOCP OPF may “inflate” izij(t) up to the branch limits in power or
current.

A way 1o force the branch losses relaxation to be tight, is to introduce
a penalty term on the growth of izij(t). Fortunately, in the case of the

OPF, this corresponds to minimise the power systems losses (i.e., a
desirable objective):

(i,j)eL



SOCP and the branch flow model m

The SOCP-relaxed OPF with grid losses:

Tmax g

Ci(P®,05,0) + Y G (B, @) + Y Ryt (®
i=1

min Z
Py, (£),Pg 5 (£),Qg, (£),,Qg 4 (£) (s

=1 i=1
P, (6),. Py, (6,05, (0,05 () 0

s. t.
Pi(t) = Xy Pjxe (8) = Pyj(6) + Ryji,, () + Gy (0) + G (0), (i, )) € £

Q;(® = Xk Qjie(®) — Qi (&) + X1z, (O) + Bivi(6) + Bjv;(6),(i,)) € £
Xk Pi() + Pi(t) = Pj(t), (i,)) € L

2k Qi) +Q;(t) = Qi;(6), (i,)) €L

Bi(6) = By, (©) + Py (D), +F5 (8),j €S

Qi) = Qg, () +Q;;() + Qs (D). j €S

v(0) = v (O+Zy [ 1, (© — 2R[ 2 (5,0 = Yo, )], ) € £
P < Py () S B, j=1,.09

QP < 0y, (0 S QR j=1,..9

P < P () S P, j=1,..,m

QM < Q5 (O <QP*,j=1,..,m

|V1|=1pu .
Where we have considered to control

= g generators;

V2 SV < V2 jES

min =

|§ij(t) - ?ivi(t)|2

by 2=y WD EL = menergy storage devices.

PA(O) + Q4 (0 < (ST) orfIy|” ~ iy, (0 < (1), (L) e £ . |

S0t +1) =Son(t)+st(t+1)At,j: 1, ..,m Remember that in these constraints the
SoC™™ < SoC;(t + 1) < SoCM,j = 1, voltage angles are not present.

g <P t+D-R <™ j=1..9



SOCP and the branch flow model m

IMPORTANT: remember that the constraint the branch current module
has neglected the current flowing through the shunt Y;

|7ij|2 ~ iZij(t) = (IiTJr'lax :

Therefore, the solution of the SOCP-OPF may still not satisfy with
exactness the branches ampacity limits.

For those interested to the subject, there exist more sophisticated
relaxations that have provided exact solutions of the SOCP-OPF for the
case of radial power systems [1] and approximated ones for the case
of meshed systems [2].
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[2] Z. Yuan and M. Paolone, “Properties of convex optimal power flow model based
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