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The relaxation process
In optimization theory, relaxation methods are techniques used to 
simplify complex optimization problems by relaxing, or loosening, 
constraints. This allows for easier computation and often leads to 
approximate solutions that are still satisfactory for practical purposes.

Relaxation methods are particularly useful when dealing with non-
convex (and/or combinatorial) optimization problems where finding 
exact solutions is difficult or computationally expensive (sometimes 
impossible, like in NP-hard problems).

An important property that any relaxation process should have, is to 
guarantee that the solution of the relaxed problem satisfies the 
constraints of the original problem. As we will see next, such property 
may not hold.
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The relaxation process
Let’s consider the standard optimization problem (𝑃), defined for

𝑥 ∈ 𝒟 ⊂ ℝ𝑛, where the set 𝒟 is the domain of definition of (𝑃):
𝑃 : min 𝑓(𝑥)

𝑠. 𝑡.
𝑓𝑖 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟 ⊂ ℝ𝑛

The relaxation of 𝑃  is to identify a new convex problem (𝑃𝑟)

𝑃𝑟 : min 𝑓𝑟 (𝑥)
𝑠. 𝑡.
𝑓𝑖

𝑟 𝑥 ≤ 0, 𝑖 = 1: 𝑚
ℎ𝑟

𝑗 𝑥 = 0, 𝑗 = 1: 𝑝

𝑥 ∈ 𝒟𝑟 ⊂ ℝ𝑛

where 𝑓𝑟 𝑥  is convex, 𝑓𝑖
𝑟 𝑥 ≤ 0 and ℎ𝑟

𝑗 𝑥 = 0 are convex 

inequalities and equalities such that

1. 𝒟𝑟 ⊇ 𝒟

2. 𝑓𝑟 𝑥 ≤ 𝑓 𝑥 , ∀𝑥 ∈ 𝒟
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The relaxation process
1. 𝒟𝑟 ⊇ 𝒟

2. 𝑓𝑟 𝑥 ≤ 𝑓 𝑥 , ∀𝑥 ∈ 𝒟

The first property states that the domain of definition of (𝑃) is a subset of 
(𝑃𝑟). The second property states that the objective function of (𝑃) is 
greater than or equal to the one of 𝑃𝑟  ∀𝑥 ∈ 𝒟.

The consequences are:

1. if 𝑥∗ is a solution of (𝑃), then 𝑥∗ ∈ 𝒟 ⊆ 𝒟𝑟 and 𝑓 𝑥∗ ≥ 𝑓𝑟 𝑥∗ , then 
the optimal value of (𝑃𝑟) is a lower bound for (𝑃).

2. since 𝑓 𝑥∗ = 𝑓𝑟 𝑥∗ ∀𝑥∗ ∈ 𝒟, a solution of (𝑃𝑟) is feasible for (𝑃), 
then it is the optimal of (𝑃).

The problem that may arise is that, since 𝒟𝑟 ⊇ 𝒟, the solution of (𝑃𝑟) 
may produce a solution that is unfeasible for 𝑃 . Therefore, the usual 
approach is to have penalties that guarantee that the relaxation is 
tight or, in other words, the solution of (𝑃𝑟) satisfies the constraints of 𝑃  
with a very good approximation (ideally none).
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The relaxation process
Example #1  

Let us consider the following mixed integer linear program (MILP):

min 𝑐𝑇(𝑥, 𝑧)
𝑠. 𝑡. 
𝐹 𝑥, 𝑧 ≤ 𝑔
A 𝑥, 𝑧 = 𝑏
𝑧 ∈ 0,1 𝑞

𝑥 ∈ ℝ𝑛

As known, MILP problems are hard to solve in their standard form.

The simplest relaxation is to replace 𝑧 ∈ 0,1 𝑞 with 𝑧 ∈ 0,1 𝑞. In this way, 
the optimal value of relaxed LP is a lower bound of the MILP.

Furthermore, in order to make the relaxation tight, we may add to the 
objective of the relaxed problem a function that is minimised when
𝑧 → 0,1.
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The relaxation process
Example #2 

Let us consider the following problem

min
𝑥,𝑦

𝑓 𝑥, 𝑦

𝑠. 𝑡.
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝑈

𝑥 ∙ 𝑦 = 𝑤

In this problem, we minimise a cost function 𝑓 𝑥, 𝑦 supposed to be 
convex, associated to two generic products 𝑥 and 𝑦, while satisfying 
min-max bounds of both products and the interaction among them 
captured by the bilinear constraint that makes the problem non-
convex.
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The relaxation process
Example #2 cont’d 

A way to relax and convexify the problem is to use the so-called 
McCormick relaxation of 𝑥 ∙ 𝑦 = 𝑤 given by four linear inequalities.

Let us introduce two auxiliary variables, say 𝑎, 𝑏, that are always 
positive by construction with respect to the upper and lower bounds 
𝑥𝐿 , 𝑥𝑈 , 𝑦𝐿𝑦𝑈: 

𝑎 = 𝑥 − 𝑥𝐿 , 𝑏 = 𝑦 − 𝑦𝐿

𝑎 ∙ 𝑏 ≥ 0 → 𝑥 − 𝑥𝐿 ∙ 𝑦 − 𝑦𝐿 = 𝑥𝑦 − 𝑥𝐿𝑦 − 𝑥𝑦𝐿 + 𝑥𝐿𝑦𝐿 ≥ 0

𝑤 ≥ 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿

𝑎 = 𝑥𝑈 − 𝑥 , 𝑏 = 𝑦𝑈 − 𝑦

𝑎 ∙ 𝑏 ≥ 0 → 𝑥𝑈 − 𝑥 ∙ 𝑦𝑈 − 𝑦 = 𝑥𝑈𝑦𝑈 − 𝑦𝑥𝑈 − 𝑥𝑦𝑈 + 𝑥𝑦 ≥ 0

𝑤 ≥ 𝑥𝑦𝑈 + 𝑦𝑥𝑈 − 𝑥𝑈𝑦𝑈

𝑎 = 𝑥𝑈 − 𝑥 , 𝑏 = 𝑦 − 𝑦𝐿

𝑎 ∙ 𝑏 ≥ 0 → 𝑥𝑈 − 𝑥 ∙ 𝑦 − 𝑦𝐿 = 𝑥𝑈𝑦 − 𝑥𝑦 − 𝑥𝑈𝑦𝐿 + 𝑥𝑦𝐿 ≥ 0

𝑤 ≤ 𝑥𝑈𝑦 − 𝑥𝑈𝑦𝐿 + 𝑥𝑦𝐿

𝑎 = 𝑥 − 𝑥𝐿 , 𝑏 = 𝑦𝑈 − 𝑦

𝑎 ∙ 𝑏 ≥ 0 → 𝑥 − 𝑥𝐿 ∙ 𝑦𝑈 − 𝑦 = 𝑥𝑦𝑈 − 𝑥𝑦 − 𝑥𝐿𝑦𝑈 + 𝑥𝐿𝑦 ≥ 0

𝑤 ≤ 𝑥𝑦𝑈 − 𝑥𝐿𝑦𝑈 + 𝑥𝐿𝑦
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The relaxation process
Example #2 cont’d

The relaxed and convex problem is

min
𝑥,𝑦

𝑓 𝑥, 𝑦

𝑠. 𝑡.
𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑈

𝑦𝐿 ≤ 𝑦 ≤ 𝑦𝑈

𝑤 ≥ 𝑥𝐿𝑦 + 𝑥𝑦𝐿 − 𝑥𝐿𝑦𝐿

𝑤 ≥ 𝑥𝑦𝑈 + 𝑦𝑥𝑈 − 𝑥𝑈𝑦𝑈

𝑤 ≤ 𝑥𝑈𝑦 − 𝑥𝑈𝑦𝐿 + 𝑥𝑦𝐿

𝑤 ≤ 𝑥𝑦𝑈 − 𝑥𝐿𝑦𝑈 + 𝑥𝐿𝑦

Clearly, in this example the domain of the relaxed problem include the 
one of the non-relaxed one: 𝒟𝑟 ⊇ 𝒟 and the solution of the relaxed 
problem may be unfeasible for the non-relaxed one.
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Second order cone programming
Let’s start with a simple example: the second-order cone, or quadratic 
cone, it is given by the elements of 𝑥, 𝑦, 𝑧 ∈ ℝ3 satisfying this condition:

𝑥2 + 𝑦2 < 𝑧

Now, let us consider 𝑧 to be a parameter, say 𝑡, we can generalize the 
above inequality to a second-order cone of dimension 𝑛 + 1:

𝒞𝑛+1: ቚ
𝑥
𝑡

𝑥 2 ≤ 𝑡

𝑥 ∈ ℝ𝑛 , 𝑡 ∈ ℝ

This constraint for 𝑥 is convex and we can further generalise it as:

𝐴𝑥 + 𝑏 2 ≤ 𝑐𝑇𝑥 + 𝑑

𝑥, 𝑐 ∈ ℝ𝑛

𝐴 ∈ ℝ𝑛+1×𝑛

𝑏 ∈ ℝ𝑛+1

𝑑 ∈ ℝ
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Second order cone programming
Therefore, an optimisation problem with the following form, is called 
second-order cone programming (SOCP):

min
𝑥

ℎ𝑇𝑥

𝑠. 𝑡.
𝐴𝑖𝑥 + 𝑏𝑖 2 ≤ 𝑐𝑖

𝑇𝑥 + 𝑑𝑖 , 𝑖 = 1, … , 𝑚

where

𝑥, 𝑓, 𝑐 ∈ ℝ𝑛

𝐴 ∈ ℝ𝑛𝑖×𝑛

𝑏 ∈ ℝ𝑛𝑖

𝑑 ∈ ℝ

The above problem is convex. In what follows, we show how we can 
relax the OPF in the form of a SOCP problem.
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SOCP and the branch flow model
Let us consider a power system whose topology is identified by a 
connected graph 𝒢 = 𝒮, ℒ  where 𝒮 represents the set of nodes, and ℒ 
the set of branches:

𝒮 = 1, … , 𝑠  where 𝑠 is the total number of buses;

ℒ = 1, … , 𝑙  where 𝑙 is the total number of branches. Naturally, a 
branch between buses 𝑖 and 𝑗 is an element in ℒ: 𝑖, 𝑗 ∈ ℒ.

Trivially, the considered power system is called radial if its graph 𝒢 is a 
tree. For distribution networks, which are typically radial, the root of the 
tree (node 1) represents the substation bus and, usually, the slack.

For a generally meshed transmission network, node 1 represents the 
slack bus being the largest power plant (or equivalent) in the system.
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SOCP and the branch flow model 15

Let us recall the branch flow model: consider a generic branch 
between nodes i and j of the network modelled by a generic 𝚷-
equivalent model

𝑍𝑖𝑗

𝑌𝑖 𝑌𝑗

𝑉𝑖 𝑉𝑗

𝑆𝑖𝑗

𝑠𝑖

𝑉𝑖, 𝑉𝑗 : complex nodal voltages respectively at nodes i and j

𝑠𝑖, 𝑠𝑗 : complex apparent power injections respectively at nodes i and j

𝑆𝑖𝑗: complex power flow from node i to node j

𝐼𝑧𝑖𝑗
: complex current flow through the branch impedance 𝑍𝑖𝑗

𝑌𝑖, 𝑌𝑗 : complex shunt admittances respectively at nodes i and j

σ𝑘 𝑆𝑘𝑖 : complex apparent power entering into node i from the rest of the grid

σ𝑘 𝑆𝑗𝑘 : complex apparent power leaving node j towards the rest of the grid

𝐼𝑧𝑖𝑗

𝑠𝑗

෍

𝑘

𝑆𝑘𝑖 ෍

𝑘

𝑆𝑗𝑘



SOCP and the branch flow model 16

By introducing two variables composed by the squares of magnitudes 
of nodal voltages and currents:

𝑣𝑖 = 𝑉𝑖

2
, 𝑣𝑗 = 𝑉𝑗

2

𝑖𝑧𝑖𝑗
= 𝐼𝑧𝑖𝑗

2

we got the branch flow model

𝑆𝑖𝑗 − 𝑍𝑖𝑗𝑖𝑧𝑖𝑗
− 𝑌𝑖𝑣𝑖 − 𝑌𝑗𝑣𝑗 + 𝑠𝑗 = ෍

𝑘

𝑆𝑗𝑘

෍

𝑘

𝑆𝑘𝑖 +𝑠𝑖= 𝑆𝑖𝑗

𝑣𝑗 = 𝑣𝑖+ 𝑍𝑖𝑗

2
𝑖𝑧𝑖𝑗

− 2ℜ 𝑍𝑖𝑗 𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

𝑖𝑧𝑖𝑗
=

𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

2

𝑣𝑖

Let us use the first constraint and separate the nodal injected active 
and reactive powers in node 𝑗 since they are the OPF decision 
variables.



SOCP and the branch flow model 17

We have for a generic branch 𝑖, 𝑗 ∈ ℒ

𝑃𝑗 = ෍

𝑘

𝑃𝑗𝑘 − 𝑃𝑖𝑗 + 𝑅𝑖𝑗𝑖𝑧𝑖𝑗
+ 𝐺𝑖𝑣𝑖 + 𝐺𝑗𝑣𝑗

𝑄𝑗 = ෍

𝑘

𝑄𝑗𝑘 − 𝑄𝑖𝑗 + 𝑋𝑖𝑗𝑖𝑧𝑖𝑗
+ 𝐵𝑖𝑣𝑖 + 𝐵𝑗𝑣𝑗

along with the two other constraints of the branch flow model

𝑣𝑗 = 𝑣𝑖+ 𝑍𝑖𝑗

2
𝑖𝑧𝑖𝑗

− 2ℜ 𝑍𝑖𝑗 𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

𝑖𝑧𝑖𝑗
=

𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

2

𝑣𝑖

The first three constraints are linear and the non-convexity of the 
branch flow model is only due to the last one. Let’s see how we can 
relax this equality by means of the SOCP.



SOCP and the branch flow model 18

It is easy to show that the constraint

𝑖𝑧𝑖𝑗
=

𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

2

𝑣𝑖
=

𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖
2

+ 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖
2

𝑣𝑖

can be rewritten as follows:

2 𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖

2 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖

𝑖𝑧𝑖𝑗
− 𝑣𝑖

2

= 𝑖𝑧𝑖𝑗
+ 𝑣𝑖

Indeed, we have the following:

4 𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖
2

+ 4 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖
2

+ 𝑖𝑧𝑖𝑗
− 𝑣𝑖

2
= 𝑖𝑧𝑖𝑗

+ 𝑣𝑖

4 𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖
2

+ 4 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖
2

+ 𝑖𝑧𝑖𝑗
2 + 𝑣𝑖

2 − 2𝑖𝑧𝑖𝑗
𝑣𝑖 = 𝑖𝑧𝑖𝑗

2 + 𝑣𝑖
2 + 2𝑖𝑧𝑖𝑗

𝑣𝑖

𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖
2

+ 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖
2

= 𝑖𝑧𝑖𝑗
𝑣𝑖



SOCP and the branch flow model 19

It is interesting to note that the constraint

2 𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖

2 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖

𝑖𝑧𝑖𝑗
− 𝑣𝑖

2

= 𝑖𝑧𝑖𝑗
+ 𝑣𝑖

can be written in the general form of a second-order cone inequality  

𝐴𝑖𝑥 + 𝑏𝑖 2 ≤ 𝑐𝑖
𝑇𝑥 + 𝑑𝑖

2 𝑃𝑖𝑗 − 𝐺𝑖𝑣𝑖

2 𝑄𝑖𝑗 − 𝐵𝑖𝑣𝑖

𝑖𝑧𝑖𝑗
− 𝑣𝑖

2

≤ 𝑖𝑧𝑖𝑗
+ 𝑣𝑖

or, in other terms, can be written by relaxing 𝑖𝑧𝑖𝑗
 (i.e, we relax the 

branch losses 𝑍𝑖𝑗𝑖𝑧𝑖𝑗
 being 𝑍𝑖𝑗 a parameter):

𝑖𝑧𝑖𝑗
≥

𝑆𝑖𝑗 − 𝑌𝑖𝑣𝑖

2

𝑣𝑖



SOCP and the branch flow model 20

There is now the need to satisfy the branch power/ampacity limit.

In the case we apply a constraint to the branch power, we need to 
have:

𝑃𝑖𝑗
2 + 𝑄𝑖𝑗

2 ≤ 𝑆𝑖𝑗
𝑚𝑎𝑥 2

It is interesting to note that the above constraint is also a second-order 
cone, so it fits the SOCP.

In case we need to constraint the branch current module, we may 

neglect the current flowing through the shunt 𝑌𝑖 and constraint the 𝐼𝑧𝑖𝑗
:

𝐼𝑖𝑗

2
≈ 𝑖𝑧𝑖𝑗

𝑡 ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 2

𝑍𝑖𝑗

𝑌𝑖 𝑌𝑗

𝑉𝑖 𝑉𝑗

𝑆𝑖𝑗

𝑠𝑖

𝐼𝑧𝑖𝑗

𝑠𝑗

෍

𝑘

𝑆𝑘𝑖 ෍

𝑘

𝑆𝑗𝑘



SOCP and the branch flow model 21
The SOCP-relaxed OPF is the following:

min
𝑃𝑔2

𝑡 ,…,𝑃𝑔𝑔 𝑡 ,𝑄𝑔2
𝑡 ,…,𝑄𝑔𝑔 𝑡

𝑃𝑠1
𝑡 ,…,𝑃𝑠𝑚 𝑡 ,𝑄𝑠1

𝑡 ,…,𝑄𝑠𝑚 𝑡

෍

𝑡=1

𝑇𝑚 𝑎𝑥

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡 , 𝑄𝑔𝑖

𝑡 + ෍

𝑖=1

𝑚

𝐶𝑖 𝑃𝑠𝑖
𝑡

𝑠. 𝑡.
𝑃𝑗 𝑡 = σ𝑘 𝑃𝑗𝑘 𝑡 − 𝑃𝑖𝑗 𝑡 + 𝑅𝑖𝑗𝑖𝑧𝑖𝑗

𝑡 + 𝐺𝑖𝑣𝑖 𝑡 + 𝐺𝑗𝑣𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑄𝑗 𝑡 = σ𝑘 𝑄𝑗𝑘 𝑡 − 𝑄𝑖𝑗 𝑡 + 𝑋𝑖𝑗𝑖𝑧𝑖𝑗
𝑡 + 𝐵𝑖𝑣𝑖 𝑡 + 𝐵𝑗𝑣𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ 

σ𝑘 𝑃𝑘𝑖 𝑡 + 𝑃𝑖 𝑡 = 𝑃𝑖𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

σ𝑘 𝑄𝑘𝑖 𝑡 + 𝑄𝑖 𝑡 = 𝑄𝑖𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑃𝑗 𝑡 = 𝑃𝑔𝑗
𝑡 + 𝑃𝑙𝑗

𝑡 , +𝑃𝑠𝑗
𝑡 , 𝑗 ∈ 𝒮

𝑄𝑗 𝑡 = 𝑄𝑔𝑗
𝑡 + 𝑄𝑙𝑗

𝑡 + 𝑄𝑠𝑗
𝑡 , 𝑗 ∈ 𝒮

𝑣𝑗 𝑡 = 𝑣𝑖 𝑡 + 𝑍𝑖𝑗

2
𝑖𝑧𝑖𝑗

𝑡 − 2ℜ 𝑍𝑖𝑗 𝑆𝑖𝑗 𝑡 − 𝑌𝑖𝑣𝑖 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑃𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑔𝑗
𝑡 ≤ 𝑃𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

𝑄𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑄𝑔𝑗
𝑡 ≤ 𝑄𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

𝑃𝑠𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑠𝑗
𝑡 ≤ 𝑃𝑠𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝑄𝑠𝑗

𝑚𝑖𝑛 ≤ 𝑄𝑠𝑗
𝑡 ≤ 𝑄𝑠𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝑉1 =1𝑝𝑢

𝑉𝑚𝑖𝑛
2 ≤ 𝑣𝑗 ≤ 𝑉𝑚𝑎𝑥

2 , 𝑗 ∈ 𝒮

𝑖𝑧𝑖𝑗
𝑡 ≥

𝑆𝑖𝑗 𝑡 − 𝑌𝑖𝑣𝑖 𝑡
2

𝑣𝑖 𝑡
, 𝑖, 𝑗 ∈ ℒ

𝑃𝑖𝑗
2 𝑡 + 𝑄𝑖𝑗

2 𝑡 ≤ 𝑆𝑖𝑗
𝑚𝑎𝑥 2

𝑜𝑟 𝑖𝑧𝑖𝑗
𝑡 ≤ 𝐼𝑖𝑗

𝑚𝑎𝑥 2
, 𝑖, 𝑗 ∈ ℒ

𝑆𝑜𝐶𝑗 𝑡 + 1 = 𝑆𝑜𝐶𝑗 𝑡 + 𝑃𝑠𝑗
𝑡 + 1 Δ𝑡, 𝑗 = 1, … , 𝑚 

𝑆𝑜𝐶𝑗
𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑗 𝑡 + 1 ≤ 𝑆𝑜𝐶𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝜉𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑔𝑗
𝑡 + 1 − 𝑃𝑔𝑗

𝑡 ≤ 𝜉𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

Where we have considered to control

▪ 𝑔 generators;

▪ 𝑚 energy storage devices.

Remember that in these constraints the 
voltage angles are not present and 

have to be retrieved a-posteriori (see 

lecture 2.4).



SOCP and the branch flow model 22

In view of the relaxation applied to the branch losses 𝑍𝑖𝑗𝑖𝑧𝑖𝑗
, the SOCP-

OPF does not satisfy the load flow equations (i.e., the relaxation is not 
tight). In other terms, to satisfy the constraint

𝑖𝑧𝑖𝑗
𝑡 ≥

𝑆𝑖𝑗 𝑡 − 𝑌𝑖𝑣𝑖 𝑡
2

𝑣𝑖 𝑡
, 𝑖, 𝑗 ∈ ℒ

the SOCP OPF may “inflate” 𝑖𝑧𝑖𝑗
𝑡  up to the branch limits in power or 

current.

A way to force the branch losses relaxation to be tight, is to introduce 
a penalty term on the growth of 𝑖𝑧𝑖𝑗

𝑡 . Fortunately, in the case of the 

OPF, this corresponds to minimise the power systems losses (i.e., a 
desirable objective):

෍

𝑖,𝑗 ∈ℒ

𝑅𝑖𝑗𝑖𝑧𝑖𝑗
𝑡
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The SOCP-relaxed OPF with grid losses:

min
𝑃𝑔2

𝑡 ,…,𝑃𝑔𝑔 𝑡 ,𝑄𝑔2
𝑡 ,…,𝑄𝑔𝑔 𝑡

𝑃𝑠1
𝑡 ,…,𝑃𝑠𝑚 𝑡 ,𝑄𝑠1

𝑡 ,…,𝑄𝑠𝑚 𝑡

෍

𝑡=1

𝑇𝑚 𝑎𝑥

෍

𝑖=1

𝑔

𝐶𝑖 𝑃𝑔𝑖
𝑡 , 𝑄𝑔𝑖

𝑡 + ෍

𝑖=1

𝑚

𝐶𝑖 𝑃𝑠𝑖
𝑡 + ෍

𝑖,𝑗 ∈ℒ

𝑅𝑖𝑗𝑖𝑧𝑖𝑗
𝑡

𝑠. 𝑡.
𝑃𝑗 𝑡 = σ𝑘 𝑃𝑗𝑘 𝑡 − 𝑃𝑖𝑗 𝑡 + 𝑅𝑖𝑗𝑖𝑧𝑖𝑗

𝑡 + 𝐺𝑖𝑣𝑖 𝑡 + 𝐺𝑗𝑣𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑄𝑗 𝑡 = σ𝑘 𝑄𝑗𝑘 𝑡 − 𝑄𝑖𝑗 𝑡 + 𝑋𝑖𝑗𝑖𝑧𝑖𝑗
𝑡 + 𝐵𝑖𝑣𝑖 𝑡 + 𝐵𝑗𝑣𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ 

σ𝑘 𝑃𝑘𝑖 𝑡 + 𝑃𝑖 𝑡 = 𝑃𝑖𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

σ𝑘 𝑄𝑘𝑖 𝑡 + 𝑄𝑖 𝑡 = 𝑄𝑖𝑗 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑃𝑗 𝑡 = 𝑃𝑔𝑗
𝑡 + 𝑃𝑙𝑗

𝑡 , +𝑃𝑠𝑗
𝑡 , 𝑗 ∈ 𝒮

𝑄𝑗 𝑡 = 𝑄𝑔𝑗
𝑡 + 𝑄𝑙𝑗

𝑡 + 𝑄𝑠𝑗
𝑡 , 𝑗 ∈ 𝒮

𝑣𝑗 𝑡 = 𝑣𝑖 𝑡 + 𝑍𝑖𝑗

2
𝑖𝑧𝑖𝑗

𝑡 − 2ℜ 𝑍𝑖𝑗 𝑆𝑖𝑗 𝑡 − 𝑌𝑖𝑣𝑖 𝑡 , 𝑖, 𝑗 ∈ ℒ

𝑃𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑔𝑗
𝑡 ≤ 𝑃𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

𝑄𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑄𝑔𝑗
𝑡 ≤ 𝑄𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

𝑃𝑠𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑠𝑗
𝑡 ≤ 𝑃𝑠𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝑄𝑠𝑗

𝑚𝑖𝑛 ≤ 𝑄𝑠𝑗
𝑡 ≤ 𝑄𝑠𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝑉1 =1𝑝𝑢

𝑉𝑚𝑖𝑛
2 ≤ 𝑣𝑗 ≤ 𝑉𝑚𝑎𝑥

2 , 𝑗 ∈ 𝒮

𝑖𝑧𝑖𝑗
𝑡 ≥

𝑆𝑖𝑗 𝑡 − 𝑌𝑖𝑣𝑖 𝑡
2

𝑣𝑖 𝑡
, 𝑖, 𝑗 ∈ ℒ

𝑃𝑖𝑗
2 𝑡 + 𝑄𝑖𝑗

2 𝑡 ≤ 𝑆𝑖𝑗
𝑚𝑎𝑥 2

𝑜𝑟 𝐼𝑖𝑗

2
≈ 𝑖𝑧𝑖𝑗

𝑡 ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 2

, 𝑖, 𝑗 ∈ ℒ

𝑆𝑜𝐶𝑗 𝑡 + 1 = 𝑆𝑜𝐶𝑗 𝑡 + 𝑃𝑠𝑗
𝑡 + 1 Δ𝑡, 𝑗 = 1, … , 𝑚 

𝑆𝑜𝐶𝑗
𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶𝑗 𝑡 + 1 ≤ 𝑆𝑜𝐶𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑚

𝜉𝑔𝑗

𝑚𝑖𝑛 ≤ 𝑃𝑔𝑗
𝑡 + 1 − 𝑃𝑔𝑗

𝑡 ≤ 𝜉𝑔𝑗

𝑚𝑎𝑥, 𝑗 = 1, … , 𝑔

Where we have considered to control

▪ 𝑔 generators;

▪ 𝑚 energy storage devices.

Remember that in these constraints the 
voltage angles are not present.
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IMPORTANT: remember that the constraint the branch current module 

has neglected the current flowing through the shunt 𝑌𝑖

𝐼𝑖𝑗

2
≈ 𝑖𝑧𝑖𝑗

𝑡 ≤ 𝐼𝑖𝑗
𝑚𝑎𝑥 2

Therefore, the solution of the SOCP-OPF may still not satisfy with 
exactness the branches ampacity limits.

For those interested to the subject, there exist more sophisticated 
relaxations that have provided exact solutions of the SOCP-OPF for the 
case of radial power systems [1] and approximated ones for the case 
of meshed systems [2].

[1] M. Nick, R. Cherkaoui, J. -Y. L. Boudec and M. Paolone, “An Exact Convex 

Formulation of the Optimal Power Flow in Radial Distribution Networks Including 

Transverse Components,” in IEEE Transactions on Automatic Control, vol. 63, no. 3, 

pp. 682-697, March 2018.

[2] Z. Yuan and M. Paolone, “Properties of convex optimal power flow model based 

on power loss relaxation,”, Electric Power Systems Research, vol. 186, 2020, 106414.
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